Product of weighted Hankel and weighted Toeplitz operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weighted Toeplitz Operators

A weighted Toeplitz operator on H(β) is defined as Tφf = P (φf) where P is the projection from L(β) onto H(β) and the symbol φ ∈ L(β) for a given sequence β = 〈βn〉n∈Z of positive numbers. In this paper, a matrix characterization of a weighted multiplication operator on L(β) is given and it is used to deduce the same for a weighted Toeplitz operator. The eigenvalues of some weighted Toeplitz ope...

متن کامل

Toeplitz Operators and Weighted Bergman Kernels

For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...

متن کامل

On Truncations of Hankel and Toeplitz Operators

We study the boundedness properties of truncation operators acting on bounded Hankel (or Toeplitz) infinite matrices. A relation with the Lacey-Thiele theorem on the bilinear Hilbert transform is established. We also study the behaviour of the truncation operators when restricted to Hankel matrices in the Schatten classes. 1. Statement of results In this note we will be dealing with infinite ma...

متن کامل

Hankel Operators on Weighted Bergman Spaces and Norm Ideals

Consider Hankel operators Hf on the weighted Bergman space L 2 a(B, dvα). In this paper we characterize the membership of (H∗ fHf ) s/2 = |Hf | in the norm ideal CΦ, where 0 < s ≤ 1 and the symmetric gauge function Φ is allowed to be arbitrary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2013

ISSN: 2391-4661

DOI: 10.1515/dema-2013-0467